Il trattamento del NSCLC metastatico ALK+

Giulio Metro

S.C. Oncologia Medica – Ospedale Santa Maria della Misericordia, Azienda Ospedaliera di Perugia

> Caso clinico n.2 Negrar, 12 Marzo 2014

Clinical case

- 35-year-old lady, with a 15 pack/year smoking history and no relevant comorbidities
- <u>August 2012</u>: Onset of dysphonia; a CT scan shows a 2 cm lesion in the left lower lobe, N2 for multiple lymph node stations, M1b for multiple liver, bony (osteosclerotic) and brain (> 5) lesions → stage IV
- <u>7 September 2012</u>: Trans-bronchial needle agobiopsy shows adenocarcinoma and confirms N2 status
- <u>19 September 2012</u>: EGFR status results to be wild type

- 1. Start platinum-based chemotherapy
- 2. Start platinum-based chemotherapy and look for ALK rearrangement
- 3. WBRT followed by platinum-based chemotherapy
- 4. Look for *ALK* rearrangement and wait for the result. If positive enroll the patient in a front-line study of chemotherapy vs. crizotinib (PROFILE 1014)

- 1. Start platinum-based chemotherapy
- 2. Start platinum-based chemotherapy and look for ALK rearrangement
- 3. WBRT followed by platinum-based chemotherapy
- 4. Look for *ALK* rearrangement and wait for the result. If positive enroll the patient in a front-line study of chemotherapy vs. crizotinib (PROFILE 1014)

- <u>24 September 2012</u>: The patient starts i.v. Cisplatin 75 mg/m² + Pemetrexed 500 mg/m² every 21 days
- Following three cycles of chemotherapy a CT scan shows partial response with complete response in the CNS
- The specimen that was sent for *ALK* testing turns out to be *ALK*-positive

- 1. Continue cisplatin/pemetrexed up to 6 cycles
- 2. Stop chemotherapy and start crizotinib (compassionate use) as maintenance treatment

Platinum/pemetrexed is highly active in ALKpositive patients

Gefitinib	mPFS
Carbo/Tax (IPASS)	6.3
Carbo/Tax (NEJ002)	5.4
Cis/Doc (WJTOG 3405)	6.3
Cis/Gem (First-SIGNAL)	6.3

Erlotinib	mPFS
Cis or Carbo/Gem or Doc (EURTAC)	5.2
Carbo/Gem (OPTIMAL)	4.6

Afatinib	mPFS	
Cis/Pem (LUX-Lung 3)	6.7	
Cis/Gem (LUX-Lung-6)	5.6	

ERCC1 and TYMS expression according to genotype

PROFILE 1007: ORR^a by Independent Radiologic Review

ORR ratio: 3.4 (95% CI: 2.5 to 4.7); P<0.001

^aRECIST v1.1

Shaw et al. ESMO 2012

Prior pemetrexed exposure leaves unaltered the chances of responding to Crizotinib

Best Response Data (Evaluable Patients) According to RECIST 1.1 criteria^a

Patient Cohort	CR	PR	SD	PD	ORR
PEM-CRIZ: Pemetrexed $(n = 9)$	1 (11)	5 (55)	2 (22)	1 (11)	6 (66)
$\begin{array}{l} \text{PEM-CRIZ: Crizotinib} \\ (n = 19) \end{array}$	1 (5)	15 (79)	3 (16)	0 (0)	16 (84)
CRIZ-PEM: Pemetrexed $(n = 4)$	1 (25)	2 (50)	0 (0)	1 (25)	3 (75)
CRIZ-PEM: Crizotinib $(n = 3)$	0 (0)	2 (66)	1 (33)	0 (0)	2 (66)

Data are presented as n (%).

Abbreviations: ORR = objective response rate; PD = progressive disease; PR = partial response; RECIST = Response Evaluation Criteria in Solid Tumors; SD = stable disease.

- 1. Continue cisplatin/pemetrexed up to 6 cycles
- 2. Stop chemotherapy and start crizotinib (compassionate use) as maintenance treatment

 <u>20 February 2013</u>: Following six cycles a CT scan confirms partial response and complete response in the CNS

- 1. Continue with Pemetrexed maintenance
- 2. Continue with crizotinib (compassionate use) as maintenance treatment
- 3. Stop chemotherapy and start follow-up with crizotinib treatment reserved at disease progression

PARAMOUNT trial

Meta-analysis of HR for PFS with an EGFR-TKI as maintenance

Study ID			HR (95% CI)	% Weight
Erlotinib				
SATURN	-		0.71 (0.62, 0.82)	22.81
ATLAS	-		0.72 (0.59, 0.88)	19.88
IFCT-GFPC 0502			0.69 (0.54, 0.88)	18.21
Subtotal (I-squared = 0.0%, p = 0.965)	\diamond		0.71 (0.63, 0.78)	60.90
Gefitinib EORTC 08021/ILCP 01/03	_		0.61 (0.45, 0.83)) 16.91
INFORM	*		0.42 (0.33, 0.55)	22.19
Subtotal (I-squared = 65.2%, p = 0.090)	\diamond		0.50 (0.32, 0.68)	39.10
Overall (I-squared = 78.1%, p = 0.001)	\diamond		0.63 (0.50, 0.76)	100.00
NOTE: Weights are from random effects analysis				
0	.5 1	1.5	2	
Favours TKIs maintenar	nce	Favo	ours control	

Meta-analysis of HR for OS with an EGFR-TKI as maintenance

Study ID		HR (95% CI)	% Weight
Erlotinib			
SATURN	+	0.81 (0.70, 0	.95) 44.31
ATLAS		0.90 (0.74, 1	.09) 22.61
IFCT-GFPC 0502		0.87 (0.68, 1	.13) 13.68
Subtotal (I-squared = 0.0%, p = 0.695)	\Diamond	0.85 (0.75, 0	.94) 80.60
Gefitinib			
EORTC 08021/ILCP 01/03		0.83 (0.60, 1	.15) 9.16
INFORM		0.84 (0.62, 1	.14) 10.24
Subtotal (I-squared = 0.0%, p = 0.959)	\Diamond	0.84 (0.65, 1	.02) 19.40
Heterogeneity between groups: p = 0.925			
Overall (I-squared = 0.0%, p = 0.946)	\Diamond	0.84 (0.76, 0	.93) 100.00
	0 .5 1	1.5 2	
Favours TKIs mainte	nance	Favours control	

EGFR-TKI maintenance in molecularly selected patients

- 1. Continue with Pemetrexed maintenance
- 2. Continue with crizotinib (compassionate use) as maintenance treatment
- 3. Stop chemotherapy and start follow-up with crizotinib treatment reserved at disease progression

Primary resistance to crizotinib

- <u>15 May 2013</u>: Clinico-radiological CNS progression (confusional state); a CT scan shows extracranial disease progression at multiple sites
- $13 \rightarrow 20/6/13$: WBRT (20 Gy in 5 fractions)

- 1. Switch to second-line chemotherapy (e.g. docetaxel)
- 2. Enroll the patient in a trial with a 2nd generation ALK-TKI (LDK-378) available for patients pretreated with chemotherapy and crizotinib

2nd generation ALK-TKIs in clinical development

Drug	Inhibition of secondary L1196M 'gatekeeper' mutation	Company	Clinical stage
LDK378	Yes	Novartis	Phase II/III
AP-26113	Yes	Ariad	Phase I/II
Alectinib	Yes	Roche/Chugai	Phase I/II
TSR-011	Yes	Tesaro	Phase I
NMS-E628	Yes	Nerviano Medical	Phase I
ASP-3026	Yes	Astellas	Phase I
X-376 and -396	Yes	Xcovery	Phase I
CEP-28122	Yes	Cephalon	Preclinical

Activity of 2nd generation ALK-TKIs: crizotinib-naïve vs. crizotinib-refractory

Author	Drug	RR Crizotinib-naïve N (%)	RR following Crizotinib N (%)
Shaw, ASCO 2013	LDK378	21/35 (60)	45/79 (57)
Camidge, IASLC 2013	AP26113	3/3 (100)	19/31 (61)
Nakagawa, ASCO 2013 (Japan)	Alectinib	43/46 (93.5)	-
Gadgeel, IASLC 2013	Alectinib	-	47 (54.5)

Anti-tumor activity of LDK-378 in the CNS

Post-crizotinib: 2nd generation ALK-TKI or chemotherapy?

- 1. Switch to second-line chemotherapy (e.g. docetaxel)
- 2. Enroll the patient in a trial with a 2nd generation ALK-TKI (LDK-378)

- <u>4 July 2013</u>: Start of LDK-378 at 750 mg/die
- <u>29 August 2013</u>: Dose reduction to 450 mg following GI toxicity (nausea/vomiting refractory to standard anti-emetics)
- <u>19 September 2013</u>: A CT scan shows partial response at extra-cranial measurable lesions. Partial response in the brain is also present
- <u>28 November 2013</u>: A CT scan confirms extra-cranial response but shows PD in the CNS. LDK-378 is continued
- <u>9 January 2014</u>: Deterioration of clinical conditions. A MRI of the brain is compatible with meningeal carcinomatosis. LDK-378 is discontinued
- <u>23 February 2014</u>: Death of the patient

Discussion

- 1. What is the best first-line for *ALK*-positive NSCLCs?
- 2. What is the role for crizotinib maintenance in *ALK*positive patients following induction chemotherapy?
- 3. Post-chemotherapy and crizotinib: chemotherapy or 2nd ALK-TKI?
- 4. CNS as significant cause of morbidity/mortality in *ALK*-positive patients. How to increase drug effectiveness in the CNS?

Discussion

- What is the best first-line for ALK-positive NSCLCs? (Profile 1014, NCT01828099)
- 2. What is the role for crizotinib maintenance in *ALK*positive patients following induction chemotherapy? we will never know
- 3. Post-chemotherapy and crizotinib: chemotherapy or 2nd ALK-TKI? Indirect evidence suggests 2nd ALK-TKI
- 4. CNS as significant cause of morbidity/mortality in *ALK*-positive patients. How to increase drug effectiveness in the CNS? New molecules needed

Thanks for your attention

giulio.metro@yahoo.com